IEEE-1788 standardization of interval arithmetic: work in progress (a personal view)

Nathalie Revol
INRIA - Université de Lyon
LIP (UMR 5668 CNRS - ENS Lyon - INRIA - UCBL)

RAIM 2012
Rencontres Arithmétique de l’Informatique Mathématique
Dijon, 20 – 22 June 2012
Algorithm: solving a nonlinear system: Newton

Why a specific iteration for interval computations?

Usual formula:

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]

Direct interval transposition:

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]

Width of the resulting interval:

\[w(x_{k+1}) = w(x_k) + w\left(\frac{f(x_k)}{f'(x_k)}\right) > w(x_k) \]
Algorithm: solving a nonlinear system: Newton

Why a specific iteration for interval computations?

Usual formula:

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]

Direct interval transposition:

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]

Width of the resulting interval:

\[w(x_{k+1}) = w(x_k) + w \left(\frac{f(x_k)}{f'(x_k)} \right) > w(x_k) \]

divergence!

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standardization of interval arithmetic
Algorithm: interval Newton
(Hansen-Greenberg 83, Baker Kearfott 95-97, Mayer 95, van Hentenryck et al. 97)

\[
x_{k+1} := \left(x_k - \frac{f(x_k)}{f'(x_k)}\right) \cap x_k
\]
Interval Newton: Brouwer theorem

A function \(f \) which is continuous on the unit ball \(B \) and which satisfies \(f(B) \subseteq B \) has a fixed point on \(B \). Furthermore, if \(f(B) \subseteq \text{int} B \) then \(f \) has a unique fixed point on \(B \).
Algorithm: interval Newton

\[(x_{k+1,1}, x_{k+1,2}) := \left(x_k - \frac{f(x_k)}{f'(x_k)} \right) \cap x_k \]
Precious features

- **Fundamental theorem of interval arithmetic ("Thou shalt not lie"):** the returned result contains the sought result;
- **Brouwer theorem:** proof of existence (and uniqueness) of a solution;
- **ad hoc division:** gap between two semi-infinite intervals is preserved.

Goal of a standardization: keep the nice properties, have common definitions.

Precious features

- **Fundamental theorem of interval arithmetic ("Thou shalt not lie"):** the returned result contains the sought result;
- **Brouwer theorem:** proof of existence (and uniqueness) of a solution;
- **ad hoc division:** gap between two semi-infinite intervals is preserved.

Goal of a standardization: keep the nice properties, have common definitions.

Creation of the IEEE P1788 project: Initiated by 15 attenders at Dagstuhl, Jan 2008. Project authorised as IEEE-WG-P1788, Jun 2008.
Precious features

- **Fundamental theorem of interval arithmetic ("Thou shalt not lie")**: the returned result contains the sought result;
- **Brouwer theorem**: proof of existence (and uniqueness) of a solution;
- **ad hoc division**: gap between two semi-infinite intervals is preserved.

Goal of a standardization: keep the nice properties, have common definitions.

Creation of the IEEE P1788 project: Initiated by 15 attenders at Dagstuhl, Jan 2008. Project authorised as IEEE-WG-P1788, Jun 2008.
How P1788’s work is done

- The bulk of work is carried out by email - electronic voting.
- Motions are proposed, seconded; three weeks discussion period; three weeks voting period.
- IEEE has given us a four year deadline...which expires soon, we will ask for a 2-years extension.
- One “in person” meeting per year is planned — during the Arith 20 conference in 2011 — next one during SCAN 2012.
- IEEE auspices: 1 report + 1 teleconference quarterly

URL of the working group:
http://grouper.ieee.org/groups/1788/
or google 1788 interval arithmetic.
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>math</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL2</td>
<td>impl.</td>
</tr>
<tr>
<td>LEVEL3</td>
<td>computer</td>
</tr>
<tr>
<td>LEVEL4</td>
<td>bits</td>
</tr>
</tbody>
</table>
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>LEVEL2</th>
<th>LEVEL3</th>
<th>LEVEL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>impl.</td>
<td>computer</td>
<td>bits</td>
</tr>
<tr>
<td>objects</td>
<td>representation</td>
<td>(no mid−rad...)</td>
<td>constructors</td>
</tr>
</tbody>
</table>

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1 math</th>
<th>objects representation (no mid–rad...) constructors</th>
<th>operations arithmetic+exceptions set interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL2 impl.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL3 computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL4 bits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standardization of interval arithmetic
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>objects</th>
<th>operations</th>
<th>predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>representation (no mid–rad...) constructors</td>
<td>arithmetic+exceptions set interval</td>
<td>comparisons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>impl.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>computer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bits</td>
<td></td>
</tr>
</tbody>
</table>
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>objects</th>
<th>operations</th>
<th>predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>representation (no mid−rad...) constructors</td>
<td>arithmetic+exceptions set interval</td>
<td>comparisons</td>
</tr>
<tr>
<td>LEVEL2</td>
<td>representation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>impl.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>computer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bits</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Motivating example
Standardization of interval arithmetic: IEEE P1788
Conclusion
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>objects representation (no mid−rad...) constructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL2</td>
<td>operations arithmetic+exceptions set interval</td>
</tr>
<tr>
<td>LEVEL3</td>
<td>predicates comparisons</td>
</tr>
<tr>
<td>LEVEL4</td>
<td>representation</td>
</tr>
</tbody>
</table>

LEVEL1
- Objects representation (no mid−rad...) constructors

LEVEL2
- Representation
- Link with IEEE−754

LEVEL3
- Object operations

LEVEL4
- Bits

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>math</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>objects</td>
</tr>
<tr>
<td></td>
<td>representation</td>
</tr>
<tr>
<td></td>
<td>(no mid−rad...)</td>
</tr>
<tr>
<td></td>
<td>constructors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL2</th>
<th>impl.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>representation</td>
</tr>
<tr>
<td></td>
<td>interchange</td>
</tr>
<tr>
<td></td>
<td>link with IEEE−754</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL3</th>
<th>computer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LEVEL4</th>
<th>bits</th>
</tr>
</thead>
</table>

Facts about the working group
Overview of the IEEE-1788 standard
Intervals
Operations
Predicates
Exceptions and decorations

Motivating example
Standardization of interval arithmetic: IEEE P1788
Conclusion
IEEE-1788 standard: the big picture

LEVEL1
math

objects
representation (no mid−rad...)
constructors

operations
arithmetic+exceptions
set
interval

predicates
comparisons

LEVEL2
impl.

representation

interchange

handling in a programming language
(constructors...)

link with IEEE−754

LEVEL3
computer

LEVEL4
bits
IEEE-1788 standard: the big picture

LEVEL1
math

objects
representation (no mid–rad...)
constructors

operations
arithmetic+exceptions
set interval

predicates
comparisons

LEVEL2
impl.

representation
interchange
handling in a programming language (constructors...)

exceptions

LEVEL3
computer

LEVEL4
bits

link with IEEE–754

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: the big picture

LEVEL1
math

objects
representation (no mid−rad...)
constructors

operations
arithmetic+exceptions
set interval

predicates
comparisons

LEVEL2
impl.

representation
interchange

handling in a programming language (constructors...)

exceptions

link with IEEE−754

I/O

LEVEL3
computer

LEVEL4
bits

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>objects</th>
<th>operations</th>
<th>predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>representation (no mid-rad...)</td>
<td>arithmetic + exceptions</td>
<td>comparisons</td>
</tr>
<tr>
<td></td>
<td>constructors</td>
<td>set interval</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEVEL2			
impl.			
	representation	handling in a programming language (constructors...)	exceptions
	interchange		link with IEEE-754

LEVEL3			
computer			

| LEVEL4 | | | |
| bits | | | |

- **LEVEL1**: Math
- **LEVEL2**: Implementation
- **LEVEL3**: Computer
- **LEVEL4**: Bits

- **objects**
 - representation (no mid-rad...)
 - constructors

- **operations**
 - arithmetic + exceptions
 - set interval

- **predicates**
 - comparisons

- **exact dot product**
- **modal Kaucher**

IEEE-1788 standard

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>LEVEL2</th>
<th>LEVEL3</th>
<th>LEVEL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>impl.</td>
<td>computer</td>
<td>bits</td>
</tr>
</tbody>
</table>

- **objects**
 - representation
 - (no mid-rad...)
 - constructors

- **operations**
 - arithmetic+exceptions
 - set interval

- **predicates**
 - comparisons

- **representation**

- **handling in a programming language**
 - (constructors...)

- **interchange**

- **link with IEEE-754**

- **exceptions**

- **I/O**

- **exact dot product**

- **modal Kaucher**

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: intervals

Representation (some intervals, like \emptyset, may need a special representation):

- **adopted representation:** by the bounds (inf-sup);
- **other representations could be:**
 - by the midpoint m and the radius r (mid-rad),
 $$[x, \bar{x}] = [m - r, m + r];$$
 - by a triple $\langle x_0, e, \bar{e} \rangle$ (triplex):
 $$[x, \bar{x}] = x_0 + [e, \bar{e}] = [x_0 + e, x_0 + \bar{e}].$$
IEEE-1788 standard: intervals

Constructors:
- On the implementation (e.g. language) side: conversion of a floating-point number into an interval, e.g. `num2interval(0.1)`, where 0.1 is a decimal floating-point constant in the binary64 type?

If c denotes the value of this constant (a binary64 number), normally 0.1 rounded to nearest, the answer would be $[c, c]$, not $\nabla(0.1), \Delta(0.1)]$ (which would be expected by the average user).

⇒ Containment property not satisfied!
IEEE-1788 standard: intervals

Constructors:

- On the implementation (e.g. language) side: conversion of a floating-point number into an interval, e.g. `num2interval(0.1)`, where 0.1 is a decimal floating-point constant in the binary64 type?

 If c denotes the value of this constant (a binary64 number), normally 0.1 rounded to nearest, the answer would be $[c, c]$, not $[\bigtriangledown(0.1), \bigtriangleup(0.1)]$ (which would be expected by the average user).

 \Rightarrow **Containment property not satisfied!**
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>objects</th>
<th>operations</th>
<th>predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>representation</td>
<td>arithmetic+exceptions</td>
<td>comparisons</td>
</tr>
<tr>
<td></td>
<td>(no mid−rad...)</td>
<td>set interval</td>
<td></td>
</tr>
<tr>
<td></td>
<td>constructors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| LEVEL2 | representation | handling in a programming language | exceptions | link with IEEE−754 |
| impl. | | (constructors...) | | I/O |

| LEVEL3 | computer |
| | |

| LEVEL4 | bits |
| | |

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: arithmetic operations

At level 1:

- $+, -, \times$: everybody agrees
- $/\ [2, 3]/[-1, 2]$: 2 semi-infinities, \mathbb{R}? \mathbb{R} for closedness
- $\sqrt{[-1, 2]}? [0, \sqrt{2}]$. no NaI but exception.

At level 2:
no NaI but exception?
The revenge of the NaI?
IEEE-1788 standard: arithmetic operations

At level 1:

- $+$, $-$, \times: everybody agrees
- $/$: $[2, 3]/[-1, 2]$: 2 semi-infinities, \mathbb{R}? \mathbb{R} for closedness
- $\sqrt{[-1, 2]}$? $[0, \sqrt{2}]$.
 no NaI but exception.

At level 2:
no NaI but exception?
The revenge of the NaI?
IEEE-1788 standard: arithmetic operations

At level 1:
▶ +, −, ×: everybody agrees
▶ /: [2, 3]/[−1, 2]: 2 semi-infinities, \(\mathbb{R} \)? \(\mathbb{R} \) for closedness
▶ \(\sqrt{[−1, 2]} \)? \([0, \sqrt{2}] \).
no NaI but exception.

At level 2:
no NaI but exception?
The revenge of the NaI?
IEEE-1788 standard: arithmetic operations

At level 1:
- +, −, ×: everybody agrees
- /: [2, 3]/[−1, 2]: 2 semi-infinities, \(\mathbb{R} \)? \(\mathbb{R} \) for closedness
- \(\sqrt{[−1, 2]} \)? \[0, \sqrt{2}].

no NaI but exception.

At level 2:
no NaI but exception?
The revenge of the NaI?
IEEE-1788 standard: arithmetic operations

At level 1:

- +, −, ×: everybody agrees
- /: [2, 3]/[−1, 2]: 2 semi-infinities, \(\mathbb{R} \)? \(\mathbb{R} \) for closedness
- \(\sqrt{[−1, 2]} \)? \([0, \sqrt{2}]\).

no NaI but exception.

At level 2:
no NaI but exception?
The revenge of the NaI?
IEEE-1788 standard: arithmetic operations

At level 1:

- \times, \div: everybody agrees
- \div: $[2,3]/[-1,2]$: 2 semi-infinities, \mathbb{R}? \mathbb{R} for closedness
- $\sqrt{[-1,2]}$? $[0,\sqrt{2}]$.
 no NaI but exception.

At level 2:
no NaI but exception?
The revenge of the NaI?
IEEE-1788 standard: operations on intervals

Example: midpoint
What is the midpoint of

- \(\mathbb{R} \) ? 0?
- \([2, +\infty)\)? MaxReal in \(\mathbb{F} \)? (at Level 2)
- \(\emptyset \)? ???

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: operations on intervals

Example: midpoint
What is the midpoint of

- \mathbb{R}?
- 0?
- $[2, +\infty)$?
- $\operatorname{MaxReal in } \mathbb{F}$? (at Level 2)
- \emptyset?
- $???$
IEEE-1788 standard: operations on intervals

Example: midpoint
What is the midpoint of
- \mathbb{R}?
- 0?
- $[2, +\infty)$?
- MaxReal in \mathbb{F}? (at Level 2)
- \emptyset?
- $??$
IEEE-1788 standard: operations on intervals

Example: midpoint
What is the midpoint of
- \mathbb{R}? 0?
- $[2, +\infty)$? MaxReal in \mathbb{F}? (at Level 2)
- \emptyset? ???
IEEE-1788 standard: operations on intervals

Example: midpoint
What is the midpoint of

- \(\mathbb{R} \)? 0?
- \([2, +\infty)\)? MaxReal in \(\mathbb{F} \)? (at Level 2)
- \(\emptyset \)? ???
IEEE-1788 standard: operations on intervals

Example: midpoint
What is the midpoint of

- \mathbb{R}? 0?
- $[2, +\infty)$? $\text{MaxReal in } \mathbb{F}$? (at Level 2)
- \emptyset? ???
IEEE-1788 standard: operations on intervals

Example: midpoint
What is the midpoint of
- \mathbb{R}? 0?
- $[2, +\infty)$? MaxReal in \mathbb{F}? (at Level 2)
- \emptyset? ???
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>objects</th>
<th>operations</th>
<th>predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>representation</td>
<td>arithmetic+exceptions</td>
<td>comparisons</td>
</tr>
<tr>
<td></td>
<td>(no mid−rad...) constructors</td>
<td>set interval</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL2</th>
<th>representation</th>
<th>handling in a programming language</th>
<th>exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>impl.</td>
<td></td>
<td>(constructors...)</td>
<td>link with IEEE−754</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL3</th>
<th>computer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL4</th>
<th>bits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- exact dot product
- modal Kaucher

IEEE-1788 standardization of interval arithmetic

Nathalie Revol - INRIA - Université de Lyon - LIP

IEEE-1788 standardization of interval arithmetic
IEEE-1788 standard: comparison relations

- **7 relations:** equal (\(=\)), subset (\(\subset\)), less than or equal to (\(\leq\)), precedes or touches (\(\preceq\)), interior to, less than (\(<\)), precedes (\(\prec\)).

Difficulties: relations defined by conditions on the bounds, but some errors with infinite bounds. Special rules... and lack of consistency for the empty set. No set-theoretic/topological definitions.

- **Interval overlapping relations:** before, meets, overlaps, starts, containedBy, finishes, equal, finishedBy, contains, startedBy, overlappedBy, metBy, after.

 Again, relations defined by conditions on the bounds.
IEEE-1788 standard: comparison relations

- **7 relations:** equal (=), subset (⊂), less than or equal to (≤), precedes or touches (≺), interior to, less than (⊂), precedes (≺).

Difficulties: relations defined by conditions on the bounds, but some errors with infinite bounds. Special rules...and lack of consistency for the empty set. No set-theoretic/topological definitions.

- **Interval overlapping relations:** before, meets, overlaps, starts, containedBy, finishes, equal, finishedBy, contains, startedBy, overlappedBy, metBy, after.
Again, relations defined by conditions on the bounds.
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>LEVEL2</th>
<th>LEVEL3</th>
<th>LEVEL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>impl.</td>
<td>computer</td>
<td>bits</td>
</tr>
<tr>
<td>objects</td>
<td>operations</td>
<td>predicates</td>
<td>exact dot product</td>
</tr>
<tr>
<td>representation</td>
<td>arithmetic + exceptions</td>
<td>comparisons</td>
<td>modal Kaucher</td>
</tr>
<tr>
<td>(no mid-rad...)</td>
<td>set interval</td>
<td>link with IEEE-754</td>
<td>handling in a programming language (constructors...)</td>
</tr>
<tr>
<td>constructors</td>
<td></td>
<td></td>
<td>I/O</td>
</tr>
</tbody>
</table>

Nathalie Revol - INRIA - Université de Lyon - LIP
IEEE-1788 standard: exception handling

Exceptions must be handled in some way, even if exceptions do look...exceptional. (It must have been the same for exception handling in IEEE-754 floating-point arithmetic.)

Best way to handle exceptions? To avoid global flags, “tags” attached to each interval: decorations.

Decorated intervals 🎄

Discussions about what should be in the decorations (defined and continuous, defined, no-information, nowhere defined).
IEEE-1788: exception raised by a constructor

On the mathematical model & implementation sides:
\texttt{nums2interval(2,1)}, i.e. \(\{ x \in \mathbb{R} \mid 2 \leq x \leq 1 \} \)?

Empty? Exception (error)? Notion of Not-an-Interval ("NaI")? Meaningful in Kaucher arithmetic: let this possibility open.
IEEE-1788: exception raised by a constructor

On the mathematical model & implementation sides:
\texttt{nums2interval}(2,1), i.e. \{x \in \mathbb{R} \mid 2 \leq x \leq 1\}?

Empty? Exception (error)? Notion of Not-an-Interval ("NaI")?
Meaningful in Kaucher arithmetic: let this possibility open.
IEEE-1788: exception raised by a constructor

On the mathematical model & implementation sides:
\texttt{nums2interval(2,1)}, i.e. \(\{ x \in \mathbb{R} \mid 2 \leq x \leq 1 \} \)?

Empty? Exception (error)? Notion of Not-an-Interval ("NaI")? Meaningful in Kaucher arithmetic: let this possibility open.
IEEE-1788: arguments outside the domain

How should $f(x)$ be handled when x is not included in the domain of f? E.g. $\sqrt{[-1, 2]}$?

- exit?
- return NaI (Not an Interval)? I.e. handle exceptional values such as NaI and infinities?
- return the set of every possible limits $\lim_{y \to x} f(y)$ for every possible x in the domain of f (but not necessarily y)?
- intersect x with the domain of f prior to the computation, silently?
- intersect x with the domain of f prior to the computation and mention it
Motions 7, 8, 15 and 18: Exceptions

Issue: How to handle exceptions efficiently.

- Typical examples:
 - (a) Invalid interval constructor
    ```
    interval(3,2) interval("[2.4,3;5]"
    ```
 —interface between interval world and numbers or text strings.
 - (b) Elementary function evaluated partly or wholly outside domain
    ```
    sqrt([-1,4]) log([-4,-1]) [1,2]/[0,0]
    ```

 - Type (a) can simply cause nonsense if ignored.

 - Type (b) are crucial for applications that depend on fixed-point theorems; but can be ignored by others, e.g. some optimisation algorithms.
Motions 7 and 8: Exceptions, cont.

What to do? A complicated issue.

- Risk that (Level 3) code to handle exceptions will slow down interval applications that don’t need it.
- One approach to type (a) is to define an **Nal ”Not an Interval”** datum at level 2, encoded at level 3 within the two FP numbers that represent an interval.
Motion 8: Exceptions by Decorations

- Alternative (Motion 8): An extra tag or decoration field (1 byte?) in level 3 representation.
- Divided into subfields that record different kinds of exceptional behaviour.
- Decoration is optional, can be added and dropped.
 - To compute at full speed, use “bare” intervals and corresponding “bare” elementary function library.
 - “Decorated” library records exceptions separate from numbers, hence code has fewer IFs & runs fast too. (We hope!)
Motions 8, 15 and 18: Decoration issues

Decorations look promising but many Qs exist:

- Bare (double) interval is 16-byte object. Decoration increases this. Can compilers efficiently allocate memory for large arrays of such objects?
- Some proposed decoration-subfields record events in the past; others are properties of the current interval. Can semantic inconsistencies arise?
- Can decoration semantics be specified at Level 2 . . .
- . . . such that correctness of code can be proven . . .
- . . . and K.I.S.S. is preserved?

Much work on exceptions remains: list, order . . .
Remark: arguments outside the domain

Problematic example (Rump, Dagstuhl seminar 09471, 2009).

\[
\begin{align*}
 f(x) &= |x - 1| \\
 g(x) &= (\sqrt{x - 1})^2
\end{align*}
\]

I know, it is not the best way of writing it...

What happens if \(x = [0, 1] \)?
With the adopted definitions of operations,

\[
\begin{align*}
 f(x) &= [0, 1] \\
 g(x) &= [0]
\end{align*}
\]

Without exception handling, **the Thou shalt not lie principle is not valid**.
One has to check whether there has been a **possibly undefined** operation...

Unexperienced programmers will not do it.
Remark: arguments outside the domain

Problematic example (Rump, Dagstuhl seminar 09471, 2009).

\[f(x) = |x - 1| \]
\[g(x) = (\sqrt{x - 1})^2 \]

I know, it is not the best way of writing it...

What happens if \(x = [0, 1]\)?

With the adopted definitions of operations,

\[f(x) = [0, 1] \]
\[g(x) = [0] \]

Without exception handling, the Thou shalt not lie principle is not valid.

One has to check whether there has been a possibly undefined operation... Unexperienced programmers will not do it.
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1 math</th>
<th>objects</th>
<th>operations</th>
<th>predicates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>representation</td>
<td>arithmetic+exceptions</td>
<td>comparisons</td>
</tr>
<tr>
<td></td>
<td>(no mid−rad...)</td>
<td>set interval</td>
<td></td>
</tr>
<tr>
<td></td>
<td>constructors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL2 impl.</th>
<th>representation</th>
<th>handling in a programming language</th>
<th>link with IEEE−754</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interchange</td>
<td>(constructors...)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>exceptions</td>
<td></td>
</tr>
</tbody>
</table>

| LEVEL3 computer | | | |

<table>
<thead>
<tr>
<th>LEVEL4 bits</th>
<th>exact dot product</th>
<th>modal Kaucher</th>
</tr>
</thead>
</table>

Nathalie Revol - INRIA - Université de Lyon - LIP

IEEE-1788 standardization of interval arithmetic
IEEE-1788 standard: the original project

P1788 Scope: “This standard specifies basic interval arithmetic (IA) operations selecting and following one of the commonly used mathematical interval models. This standard supports the IEEE-754/2008 floating point types of practical use in interval computations. Exception conditions will be defined and standard handling of these conditions will be specified. Consistency with the model is tempered with practical considerations based on input from representatives of vendors and owners of existing systems. The standard provides a layer between the hardware and the programming language levels. It does not mandate that any operations be implemented in hardware. It does not define any realization of the basic operations as functions in a programming language.”
IEEE-1788 standard: what is still missing

- **Level 4:** probably none of our business
- **Level 3:** chosen to be independent of IEEE-754: probably required features must be explicited and adopted
- **Level 2:** reference implementation
- **Level 1:** cornercases (\(\emptyset\)), hooks for variants (Kaucher...)
IEEE-1788 standard: what is still missing

- **Level 4:** probably none of our business
- **Level 3:** chosen to be independent of IEEE-754: probably required features must be explicited and adopted
- **Level 2:** reference implementation
- **Level 1:** cornercases (\emptyset), hooks for variants (Kaucher,...)
IEEE-1788 standard: what is still missing

- **Level 4**: probably none of our business
- **Level 3**: chosen to be independent of IEEE-754: probably required features must be explicated and adopted
- **Level 2**: reference implementation
- **Level 1**: corner cases (\emptyset), hooks for variants (Kaucher...)
IEEE-1788 standard: what is still missing

- **Level 4**: probably none of our business
- **Level 3**: chosen to be independent of IEEE-754: probably required features must be explicited and adopted
- **Level 2**: reference implementation
- **Level 1**: cornercases (\emptyset), hooks for variants (Kaucher…)
IEEE-1788 standard: what is still missing

- **Level 4**: probably none of our business
- **Level 3**: chosen to be independent of IEEE-754: probably required features must be explicited and adopted
- **Level 2**: reference implementation
- **Level 1**: cornercases (\emptyset), hooks for variants (Kaucher….)
IEEE-1788 standard: what is still missing

- **Level 4**: probably none of our business
- **Level 3**: chosen to be independent of IEEE-754: probably required features must be explicited and adopted
- **Level 2**: reference implementation
- **Level 1**: corner cases (\emptyset), hooks for variants (Kaucher….)
IEEE-1788 standard: what is still missing

▶ **Level 4:** probably none of our business

▶ **Level 3:** chosen to be independent of IEEE-754: probably required features must be explicited and adopted

▶ **Level 2:** reference implementation

▶ **Level 1:** cornercases (\emptyset), hooks for variants (Kaucher…)
IEEE-1788 standard: what is still missing

- **Level 4:** probably none of our business
- **Level 3:** chosen to be independent of IEEE-754: probably required features must be explicited and adopted
- **Level 2:** reference implementation
- **Level 1:** cornercases (\emptyset), hooks for variants (Kaucher….)
IEEE-1788 standard: what is still missing

- **Level 4:** probably none of our business
- **Level 3:** chosen to be independent of IEEE-754: probably required features must be explicited and adopted
- **Level 2:** reference implementation
- **Level 1:** cornercases (\(\emptyset\)), hooks for variants (Kaucher...)
Motions discussed so far

1-34 Provisional standard notation for intervals
2-14-31 Levels structure for standardisation process
3 Standard is based on \mathbb{R} not \mathbb{R}
4-24-29-33-34 Number system (not only 754 systems), rounding
30 Constructors
5-10 Arithmetic operations and elementary functions
6 Multi- & mixed-format interval support
9 Exact dot product
11-12 Reverse Arithmetic Operations
13-14-20 Comparison Relations
21 Overlapping intervals
16-19-23-32 inf/sup and mid/rad
17 IO
7-8-15-18-22-25-26-27 Exception handling: decorations
28 Containment only
Motivating example

Standardization of interval arithmetic: IEEE P1788

Conclusion

Motions and topics of discussion

Motions adopted

Motions adopted so far

1-34 Provisional standard notation for intervals
2-14-31 Levels structure for standardisation process
 3 Standard is based on \(\mathbb{R} \) not \(\overline{\mathbb{R}} \)
24-29-33 Number system (not only 754 systems), rounding
 30 Constructors
5-10 Arithmetic operations and elementary functions
 6 Multi- & mixed-format interval support
 9 Exact dot product
12 Reverse Arithmetic Operations
13-14-20 Comparison Relations
 21 Overlapping intervals
16-19 inf/sup and mid/rad
 17 IO
8-18 Exception handling: decorations
IEEE-1788 standard: the big picture

<table>
<thead>
<tr>
<th>LEVEL1</th>
<th>LEVEL2</th>
<th>LEVEL3</th>
<th>LEVEL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>math</td>
<td>impl.</td>
<td>computer</td>
<td>bits</td>
</tr>
<tr>
<td>objects</td>
<td>operations</td>
<td>predicates</td>
<td></td>
</tr>
<tr>
<td>representation (no mid−rad...)</td>
<td>arithmetic+exceptions set interval</td>
<td>comparisons</td>
<td></td>
</tr>
<tr>
<td>constructors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>representation</td>
<td>interchange</td>
<td>handling in a programming language (constructors...)</td>
<td>exceptions</td>
</tr>
<tr>
<td>exact dot product</td>
<td>modal Kaucher</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nathalie Revol - INRIA - Université de Lyon - LIP